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In all problems of unsteady crack propagation which have been solved to date 
[l to 33, It has been assumed that the crack propagates at a constant speed. 
This assumption was not prompted by physical considerations of the problem, 
but by the methods of solution, therefore, the appllcablllty of the results 
Is limited. It would be more realistic to consider the speed of crack pro- 
pagation as a function of time based on explicit physical hypotheses. Unfor- 
tunately, the general case of the resultant problem cannot be solved by 
existing methods. However, the problem of longitudinal shear cracks, I.e. 
the plane problem In which the displacement Is parallel to the crack boundary, 
may be solved for an arbitrary given variation In crack propagation speed, 
utilizing the method developed In connection with the theory of supersonic 
flows [4 and 53. 

Note that equilibrium problems of longitudinal shear cracks have been 
studied In C6 and 71. _ 

_ 

1. lormul&tian oi prObl~l?l. Consider an Infinite elastic 

modulus P - 1, speed of transverse wave propagation b-1 

plea the space outside of the crack (Flg.l), given by 

x1< x < x27 -=J<Y<co, z=o 

body whose shear 

and which occu- 

(1.1) 

Assume that all loads applied to the body are directed along y and are 

constant along this axis. Then the displacement vector will also be ln the 

All of the above quantities are not functions of 

y . We assume further that the state of stress of the body Is such that w 

Is an odd function of I . By the principle of superposition, we may sepa- 
rate the terms due to an Initial state of stress arid the terms due to body 

forces In the absence of a crack, thus reducing any arbitrary problem with 

zero initial conditions and specified loads along the crack 

w G 0, alup c 0, for t = 0 (1.3) 
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tyz = -p(s, q for Xl<X<.X,, 2 = 0 (1.4) 
For the time being, we will study the problem under the assumption that 

the crack boundary Is specified at some instant 

where x=(t) and x1(t) are, respectively, monotonously increasing and de- 

creasing functions of time, I.e. 

x1' (4 < 07 x2' (t> > 0, 

the dot denoting differentiation with respect to 

The enumerated conditions must be accompanied 

azw az,y atyz 
at:!= (jZ +z 

which Is equivalent to the wave equation in w 

t>O (1.6) 
time. 

by the equation of motion 

In view of the assumed symmetry of the problem, It is sufficient to obtain 

a solution In the half-plane a>0 only; at 2 - 0 this solution Is to 

satisfy, in addition to 

W=O 

since w is continuous 

2. lolutlon for TV2 

(1.4), the conditions 

for z = 0, - 00 <z < 2,) 

outside the crack, and Is 

xz<x< w 

an odd function of .v . 

?or x = 0. Hereinafter the subscripts for T,* 

will be omitted, I.e. we will write T Instead of T,* . 

Using the method of Volterra, we readily obtain the relation 

w(xo, zi, to) = f (t (x, t) SE t (x, 0, t,) (2.1) 

valid for zc 2 0 . Here S Is that part of the rt plane which lies 

inside the cone 

00 - 0" - (xc - 2)" - 202 > 0, o,<t<C3 

For zc- 0 we obtain 

w (x0, to) = f a is ‘t(x, t) 
dx dt 

so 
V( to - t)2 - (x0 - 42 

Here So is the triangle 

(4, - t)' - (xc - x)" > 0: 0 < t < 6, 

By virtue of (1.8) we have 

!I 
z (x, 0 1/ (I0 _ t;::(,, _.%)" = O 

for zO:oxxl(t) or xo>‘xp(t) . 

Let UB first examlne the time Interval 0 < to< x0- x1 (0) , 

turbances from the left edge of the crack have not yet reached 

(2.2) 

(2.3) 

(2.4) 

P-5) 

when the dis- 

the observation 
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point, for x0 >xz(t). Clearly, frog the homogeneity of 

tions, 7(x, t) z 0 for x > t + r.(O) . Consequently, 

gratlon for this case 1s defined by 

the Initial condl- 

the region of lnte- 

to - t >I x0 - 21, t > 5 - 52 (0) 

The subregion defined by x < x2(t) will be denoted by S, ; the subre- 

gion defined by x > x2(t) will be denoted by Sz . On S,, 7(x, t) is 

given by (1.4). Thus 

(2.6) 

Here the right-hand side Is a known function of x0 and to . 

Let us introduce the characteristic coordinates of the system 

Then (2.6) takes the form 

(fl(4, 9) = f (2, th Pl(E. tl) = P("v Q) 

The function q,(t) Is a solution of Equation 

(2.9) 

I.e. Equation VJ - ~(5) defines the position of the right rdge of the crack 

In terms of 5 and TJ . 

Clearly, (2.8) will be satisfied if 

(2.10) 

The above Is In the form of Abel's Integral equation In ~~(5, Q) . Its 

solution Is given by 
n&3 * 

%(Eo, q0) = 
1 

s 
Pl(EO7 7) 

r/w (40) - q 
3% VVJ - ‘12 (Eo) 

drl 
_Eo % - (1 

(2.11) 

The preceding expression holds for r(+ Q(&,) , i.e. to the right of the 

crack. The stress to the left of the crack may be obtained in-a similar 

manner, and Is given by 
41(Q) --. 

Pl (EY rlo) (2.12) 

for 50’ !I (~1 , I.e. to bhe left of the crack. Here fl(~) is the solution 

of Equation 
(2.13) 

In terms of physical variables, (2.11) and (2.12) take the form 
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for x0> zz(to) , where t, Is the solution of 

where t, is the solution of 

to + x0 = t, + 51 (Q (2.17) 

Expressions (2.14) and (2.16) have been obtained for the time Intervals 

0 < to< x0- x,(O) and 0 c to< x2(O) -x0 , respectively. Moreover, the 

intervals of lntegi'atlon for both expressions lie entirely on the crack sur- 

face. To determine 7(x0, to) for larger values of time it 1s necessary to 

Interchange (2.14) and (2.16), setting p(x, t) z - T(JC, t) on those por- 

tions of range of integration on which the stress Is unknown. This procedure 

corresponds to repeated diffraction of the waves at the crack boundary. 

3. Ooafiiolmt OS rtm88 lntmrlty. Expressions (2.14) and (2.16) give 

Infinite values for the stresses at the crack boundary. In the neighborhood 

of the right edge of the crack, (2.14) yields the following asymptotic 

expression for ~(Jc0, to) : 

(3.1) 

Here k, is the coefficient of stress intensity at the right edge of the 

crack 

P-2) 

Similarly 

where 

z@o, to) = h 

n 1/x1 (to) - 20 
for %I -+ Xl (to) (3.3) 

W0)+~0 

(3.4) 
XI(b) 

If the transformation Is mad& to a moving coordinate system with the orl- 

gin at the edge of the crack and the x-axis along the crack, then the follow- 

ing expression Is obtained, which Is valid for both the right and left edge 

of the crack: 

k= ~/I-L’ ip(“., t-d)$$ (3.5) 
0 

where x‘> 0 on the crack, while xl< 0 on Its extension, and v Is the 

velocity of displacement of the crack edge. For the left edge of the crack 

xl= x - s,(t) , v I - x1* ; for the right edge r'= x,($)--r, v = x=* . 

With the aid of (3.5) we may carry over some of the results of static 

crack theory to the dynamic case. Let pO(x, t) be the distribution of the 



cohesive forces In the neighborhood of the crack boundary. Then the coeffl- 

clent of stress Intensity which takes Into account the cohesive forces IS 

given by 

We now require that the stresses at the crack boundary be finite (Khrlst- 

lanovlch-Eiarenblatt condition C83). Thus, k'= 0 . Dsflnlng the modulus of 

cohesion 

K(v, t) = I/~~po(d, t-d) +- 
0 

P-6) 

we obtain the condition 

where k Is the coefficient 

the coeheslve forces. 

k = K (u, t) (3.7) 

of stress Intensity obtained without regard to 

Let the length of the crack boundary zone equal I . Generally, we can 

consider I to be very small In comparison with any characteristic dimension 

of the problem. Consider the case ts I . Then (3.6) may be simplified by 

neglecting x' In comparison with t , yielding 

K(v, t) = sp”(d, t)+ vJ=i 
0 

Now assume that the distribution of cohesive forces at the boundary of 

the propagating crack depends only on the speed of crack propagation, and Is 

not an explicit function of time. This assumption Is a natural generallza- 

tlon of Barenblatt's hypothesis on the Independent character of the crack 

boundary zone. In that case, the modulus of cohesion will only be a function 

of u ) and be given by 1 

(3.9) 

4. mler~otlo ooabitloa. The cohesive forces lnfuence the stress dlstrl- 

butlon ln the body only at a distance of order I from the crack boundary. 

Thus, for small I , the boundary zone may be taken as a point, and the cohe- 

sive forces may be disregarded. Then, of course, the condition that the 

stresses be finite cannot be fulfilled, but another condition lnay be obtained, 

defining the coefficient of stress Intensity. Namely, we can assums that the 

work done in the rupture process (In overcoming the cohesive forces) depends 

only on the speed of crack propagation, I.e. for a given material, It may be 

expressed as a function of the speed of propagation 

P = P lv) (4.1) 
Consider the energy Integral obtained from the equation of ~tlonj this 

can be related to the coefficient of stress Intensity by 

P (v) = n-’ (1 - I,+)-‘~~ k2 (4.2) 

where k Is given by (3.2) or (3.4). Relation (4.2) may be rew+ltten as 

k E K(v) = hcP (Y) VI - v2 (4.3) 
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Ao u-0, this condition becomes Qrlfflth's condition for a etatlc longl- 

tudlnal shear crack. 

The function (4.1) haa to be determined either experimentally or theoretl- 

tally from some phyalcal aeaumptlone regarding the rupture mechanism. For 

emle, If we a88ume that ln the progress of crack formation no plaatlc 

deformation takes place, and all work Is spent In Increasing the surface 

energy, then 
K(v) = 1/25cT VI - z9 (4.4) 

where 2 18 the surface tension, which Is a material constant. Experlment- 

ally, It la convenient to determine the coefficient of stress Intensity, or 

ln the final analysle, the cohesion modulus K(u) , rather than the function 

In (4.1). 

Now It la no longer neceesary to consider xl(t) and xl(t) a8 hewn func- 

tions of time. Substituting (3.2) and (3.4) Into (3.7), we obtain a dlffer- 

entlal equation for the determination of the locations of the crack ends at 

any time; for example 

3. -1.8. The lnveatlgatlon of problema for cracka of flnlte length 
can only be conducted numerically, elnce the multiple integrals ln connection 
with the repreated wave diffractions cannot be obtained In closed form even 
In the simplest caiaee, Therefore, the examples considered below are for a 
semi-lnflnlte crack only. Actually, the results obtained ln the case of a 
semi-lnflnlte crack are also applicable to finite cracks at such tlmea that 
the disturbances from one end of the crack have not yet reached the otherend. 

a) Consider the case of an elastic continuum which la lnltlally under a 
homogeneous state of stress such that T = ?. ; at t - 0 , an lnstantane- 
ouo semi-lnftilte crack develops along tee negative x-axis. In that case 
p - T,, and Is independent of x and t . 

Substitution of the above value into (3.2) yields the coefficient of 
etresr lntenalty 

k=2-jf/1-zzzov)/I (5.1) 

where x(t) la the coordinate of the crack end at time t . So long as the 
magnitude of the etresa intensity coefficient ha8 not reached the value of 
the static cohesion modulufs, the crack remains stationary, I.e. 

r=O for t < to = [K (0)l” / 4T$ (5.2) 

Crack propagation starts at time t = to, and k muet then be equal to 
the cohesion modulus K(x*) , I.e. 

K (5‘) (1 - x’)+” = 2a, v/t (5.3) 

Thle differential equation determines r(t) . If X(X') Is bounded, then 

x'+ 1 for t 4 00 

I.e. the velocity of crack propagation approaches, with time, the transverse 
wave ve$oclty of the medium, and the crack propagation never stops. This Is 
only natural, since there exists no solution for a semi-infinite equlllbrlurn 
crack In a homog&eoua etreas field. 

b) As a second example consider a semi-Infinite crack with a concen- 
trated load p = p"a(x + 2) applied at time t = 0 at the point x - - p. 
In this case, (3.2) yields 



where X(t) is the Heavlslde function. This expression is zero for t =z x0 
i.e. so long as the disturbance has not yet reached the crack end. Thus, 

the crack does not propagate, and 

At the time t - x0, the magnitude 

k= 

If this quantity is less than the static cohe- 
sion modulus, the cradk will not begin to propa- 
gate at all, since It Is clear from (5.4) that k 
can only decrease in the course of crack propaga- 
tion. Hence, crack propagation will take place 
only under conditions 

pe>m 
Fig. 2 y x”- 

In that case, equating the expression in (5.4) to 
modulus, we obtain a dlfferentlal equation for .x(t) 

the dynamic cohesion 

(5.7) 

Again, assuming X(x’) to be bounded we conclude that the crack will Only 
propagate as long as its boundary has not reached the point 

% = Ip” /K (0)la- z” (54 

after which crack propagation will cease. 

In both of the Investigated problems, more detailed information may be 
obtained with regard to crack 
for X(U) and Equations (5.3 

ropagation If some definite form is assumed 
P and (5.7) are integrated. For deflnlteness, 

assume tha6 the energy of rupture 1s constant, i.e. we will consider a purely 
brittle fracture with no plastic deformation. In this case, the cohesion 
modulus Is given by (4.4). Substituting this expresalon into (5.3) and (5.7) 
we obtain the governing equation of motion for the crack 

for example (a) 

c 2% 
---1-2 

t 
x=t+- 2 m-z 7 

1 
to 

and for example (b) 

The character of the corresponding curves 
1s shown in Pigs .2 and 3. 

The formulas obtained herein, in principle 
enable one to study the propagation of longl- 
tudlnal shear cracks under arbitrary loading 
and over arbitrary time Intervals, provided 

FlJ3. 3 
that the functional relationship between the 
cohesion modulus and the speed of crack pro- 
pagation Is known. The only limitation Is 

that the initial crack length must be finite and large ln comparison with 
the boundary reglon in order that the Idea of cohesion modulus be msanlng- 
ful. Investigation of the initial period of the crack propagation before 
interaction between the boundaries occurs, Is particularly simple. After- 
wards, analysis becomes increasingly oomplex as time lncreaaes, and can be 
carried out only by numerical methods. 
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